Unraveling the Temporal Dynamics of Reward Signals in Music-Induced Pleasure with TMS.

TitleUnraveling the Temporal Dynamics of Reward Signals in Music-Induced Pleasure with TMS.
Publication TypeJournal Article
Year of Publication2021
AuthorsMas-Herrero E, Dagher A, Farrés-Franch M, Zatorre RJ
JournalJ Neurosci
Volume41
Issue17
Pagination3889-3899
Date Published2021 Apr 28
ISSN1529-2401
Abstract

Music's ability to induce feelings of pleasure has been the subject of intense neuroscientific research lately. Prior neuroimaging studies have shown that music-induced pleasure engages cortico-striatal circuits related to the anticipation and receipt of biologically relevant rewards/incentives, but these reports are necessarily correlational. Here, we studied both the causal role of this circuitry and its temporal dynamics by applying transcranial magnetic stimulation (TMS) over the left dorsolateral PFC combined with fMRI in 17 male and female participants. Behaviorally, we found that, in accord with previous findings, excitation of fronto-striatal pathways enhanced subjective reports of music-induced pleasure and motivation, whereas inhibition of the same circuitry led to the reduction of both. fMRI activity patterns indicated that these behavioral changes were driven by bidirectional TMS-induced alteration of fronto-striatal function. Specifically, changes in activity in the NAcc predicted modulation of both hedonic and motivational responses, with a dissociation between pre-experiential versus experiential components of musical reward. In addition, TMS-induced changes in the fMRI functional connectivity between the NAcc and frontal and auditory cortices predicted the degree of modulation of hedonic responses. These results indicate that the engagement of cortico-striatal pathways and the NAcc, in particular, is indispensable to experience rewarding feelings from music. Neuroimaging studies have shown that music-induced pleasure engages cortico-striatal circuits involved in the processing of biologically relevant rewards. Yet, these reports are necessarily correlational. Here, we studied both the causal role of this circuitry and its temporal dynamics by combining brain stimulation over the frontal cortex with functional imaging. Behaviorally, we found that excitation and inhibition of fronto-striatal pathways enhanced and disrupted, respectively, subjective reports of music-induced pleasure and motivation. These changes were associated with changes in NAcc activity and NAcc coupling with frontal and auditory cortices, dissociating between pre-experimental versus experiential components of musical reward. These results indicate that the engagement of cortico-striatal pathways, and the NAcc in particular, is indispensable to experience rewarding feeling from music.

DOI10.1523/JNEUROSCI.0727-20.2020
Alternate JournalJ Neurosci
PubMed ID33782048
PubMed Central IDPMC8084325